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1. Introduction and summary

We now have a good understanding of the spectrum of 1/4 BPS states in a class of N = 4

supersymmetric string theories which are obtained as ZN orbifolds of type IIA string theory

on K3 × T 2 or T 4 × T 2 for prime values of N [1 – 10]. In each example studied so far, the

statistical entropy computed by taking the logarithm of the degeneracy of states agrees

with the entropy of the corresponding black hole for large charges, not only in the leading

order but also in the first non-leading order [2, 6, 9, 10]. On the black hole side this requires

taking into account the effect of Gauss-Bonnet term in the low energy effective action of

the theory, and use of Wald’s generalized formula for the black hole entropy in the presence

of higher derivative corrections [11 – 14].

In this paper we generalize this analysis to N = 4 supersymmetric theories, obtained

as ZN orbifolds of type IIA string theory on K3× T 2 or T 4 × T 2, for generic N which are

not necessarily prime. In this process we also demonstrate the relationship between the

black hole entropy and the statistical entropy in a more explicit manner by comparing the

expressions for various coefficients rather than matching their final values.

Since the analysis of the paper involves a lot of technical details, we shall summarize

our results here. As in the case of [9, 10] we consider type IIB string theory on M×S1× S̃1

where M is either K3 or T 4, and mod out this theory by a ZN symmetry group generated

by a transformation g that involves 1/N unit of shift along the circle S1 together with an
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order N transformation g̃ in M. g̃ is chosen in such a way that the final theory has N = 4

supersymmetry. We consider in this theory a configuration with a single D5-brane wrapped

on M×S1, Q1 D1-branes wrapped on S1, a single Kaluza-Klein monopole associated with

the circle S̃1, −n/N units of momentum along S1 and J units of momentum along S̃1 [3].1

By making an S-duality transformation, followed by a T-duality along the circle S̃1 and

a six dimensional string-string duality, we can map this system to an asymmetric ZN

orbifold of heterotic (for M = K3) [15 – 17] or type IIA (for M = T 4) [18] string theory on

T 4 × S1 × Ŝ1, with −n/N units of momentum along S1, a single Kaluza-Klein monopole

associated with Ŝ1, (Q1−β) units of NS 5-brane charge along T 4×S1, J units of NS 5-brane

charge along T 4 × Ŝ1 and a single fundamental string wound along S1 [9]. Here β is the

Euler character of M divided by 24. If Qe and Qm denote the electric and magnetic charge

vectors in this asymmetric orbifold description,2 and if · denotes the T-duality invariant

inner product in this description, then we have

Q2
e ≡ Qe · Qe = 2n/N, Q2

m ≡ Qm · Qm = 2(Q1 − β), Qe · Qm = J . (1.1)

We denote by d(Qe, Qm) the number of bosonic minus fermionic quarter BPS supermulti-

plets carrying a given set of charges (Qe, Qm), a supermultiplet being considered bosonic

(fermionic) if it is obtained by tensoring the basic 64 dimensional quarter BPS supermul-

tiplet with a supersymmetry singlet bosonic (fermionic) state. Our result for d(Qe, Qm)

is

d(Qe, Qm) =
1

N

∫

C
dρ̃ dσ̃ dṽ e−πi(N eρQ2

e+eσQ2
m/N+2evQe·Qm) 1

Φ̃(ρ̃, σ̃, ṽ)
, (1.2)

where Φ̃ is a function to be defined below and C is a three real dimensional subspace of the

three complex dimensional space labelled by (ρ̃, σ̃, ṽ), given by

Im ρ̃ = M1, Im σ̃ = M2, Im ṽ = M3,

0 ≤ Re ρ̃ ≤ 1, 0 ≤ Re σ̃ ≤ N, 0 ≤ Re ṽ ≤ 1 , (1.3)

where M1, M2 and M3 are large but fixed positive numbers. Alternatively, we can express

d(Qe, Qm) as

d(Qe, Qm) = g

(
N

2
Q2

e,
1

2N
Q2

m, Qe · Qm

)
, (1.4)

where g(m,n, p) are the coefficients of Fourier expansion of the function 1/Φ̃(ρ̃, σ̃, ṽ):

1

Φ̃(ρ̃, σ̃, ṽ)
=

∑

m,n,p

g(m,n, p) e2πi(m eρ+n eσ+p ev) . (1.5)

1Here all the units refer to those in the orbifold theory. Thus for example if S1 has radius R then

in the orbifold theory there will be periodicity under a translation by 2πR/N along S1 together with an

appropriate transformation on the rest of the conformal field theory. Hence the unit of momentum along

S1 is taken to be N/R.
2Unless mentioned otherwise, whenever we refer to electric or magnetic charges or T- or S-duality

symmetry of the theory, we shall imply electric or magnetic charges or T- or S-duality symmetry in the

asymmetric orbifold description.
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In order to define Φ̃ we shall have to consider a 2-dimensional (4,4) superconformal σ-

model with target space M, modded out by the Z̃N group generated by the transformation

g̃ described earlier. In this theory we define [19]

F (r,s)(τ, z) ≡
1

N
TrRR;egr

(
g̃s(−1)FL+FRe2πiτL0e−2πiτ̄ L̄0e2πiFLz

)
, 0 ≤ r, s ≤ N − 1 ,

(1.6)

where Tr denotes trace over all the Ramond-Ramond (RR) sector states twisted by g̃r in

the superconformal field theory (SCFT) described above before we project on to g̃ invariant

states, FL and FR denote the world-sheet fermion numbers associated with left and right

chiral fermions in this SCFT and Ln, L̄n are the Virasoro generators in this SCFT with

additive factors of −cL/24 and −cR/24 included in the definitions of L0 and L̄0. In this

convention the RR sector ground state has L0 = L̄0 = 0. F (r,s)(τ, z) can be shown to have

an expansion of the form

F (r,s)(τ, z) =
1∑

b=0

∑

j∈2Z+b,n∈Z/N

4n−j2≥−b2

c
(r,s)
b (4n − j2)e2πinτ+2πijz . (1.7)

This defines the coefficients c
(r,s)
b (u). We also define

Qr,s = N
(
c
(r,s)
0 (0) + 2 c

(r,s)
1 (−1)

)
, (1.8)

and

α̃ =
1

24N
Q0,0 −

1

2N

N−1∑

s=1

Q0,s
e−2πis/N

(1 − e−2πis/N )2
, γ̃ =

1

24N
Q0,0 . (1.9)

In terms of these coefficients the function Φ̃ appearing in (1.2) is given by

Φ̃(ρ̃, σ̃, ṽ) = e2πi(eαeρ+eγeσ+ev)

×
1∏

b=0

N−1∏

r=0

∏

k′∈Z+ r
N

,l∈Z,j∈2Z+b

k′,l≥0,j<0 for k′=l=0

(
1−exp

(
2πi(k′σ̃ + lρ̃ + jṽ)

))PN−1
s=0 e−2πisl/N c

(r,s)
b (4k′l−j2)

.

(1.10)

This expression for Φ̃, including the values of α̃ and γ̃, reduces to the ones studied earlier

for prime values of N [6 – 10] except for an overall normalization factor. We have used a

new normalization convention for Φ̃ to simplify some of the formulæ.

One point about the degeneracy formula given above is worth mentioning. Eqs. (1.2)

and (1.4) are equivalent only if the sum over m, n, p in (1.5) are convergent for large

imaginary ρ̃, σ̃ and ṽ. This in particular requires that for fixed m and n the sum over

p is bounded from below. By examining the formula (1.10) for Φ̃ and the fact that the

coefficients c
(r,s)
b (u) are non-zero only for 4u ≥ −b2, we can verify that with the exception of

the contribution from the k′ = l = 0 term in this product, the other terms, when expanded

in a power series expansion in e2πieρ and e2πieσ , does have the form of (1.5) with p bounded

from below for fixed m, n. However for the k′ = l = 0 term, which arises from the dynamics
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of the D1-D5 centre of mass motion in the Kaluza-Klein monopole background and gives

a contribution e−2πiev/(1 − e−2πiev)2 [9], there is an ambiguity in carrying out the series

expansion. We could either use the form given above and expand the denominator in a

series expansion in e−2πiev, or express it in the form e2πiev/(1 − e2πiev)2 and expand it in a

series expansion in e2πiev. It was shown in [9] that depending on the angle between S1 and

S̃1, only one of these expansions produce the degeneracy formula correctly. The physical

spectrum actually changes as this angle passes through 90◦ since at this point the system is

only marginally stable. On the other hand our degeneracy formula (1.2) implicitly requires

that we expand this factor in powers of e2πiev since only in this case the sum over p in (1.5)

is bounded from below for fixed m, n. Thus as it stands the formula is valid for a specific

range of values of the angle between S1 and S̃1, which, in the dual asymmetric orbifold

description of the system, corresponds to the sign of the axion field. For the other sign

of the axion we need to take M3 to be large and negative to get a correct formula for the

degeneracy.

Another point about (1.2) is that it has been derived for special charge vectors Qe,

Qm in a specific region of the moduli space, – the weakly coupling region in the original

description as type IIB string theory on M×S1×S̃1/ZN . Thus although we have expressed

the formula for d(Qe, Qm) in a form that is independent of the asymptotic values of the

various moduli fields and as a function of the T-duality invariant combinations Q2
e, Q2

m and

Qe ·Qm, it need not have this form in all regions of the moduli space for all charge vectors.

In particular the spectrum could change discontinuously across curves of marginal stability

as we vary the moduli [20]. Since the duality invariance of the theory only guarantees that

the spectrum remains invariant under a simultaneous duality transformation of the moduli

and the charge vectors, we cannot invoke duality invariance to find d(Qe, Qm) for general

charge vectors unless we know the moduli dependence of the formula from other sources.

S-duality invariance of the theory in the asymmetric orbifold description corresponds

to global diffeomorphism symmetry associated with the torus S1 × S̃1 in the original de-

scription of the theory. This leaves invariant the weak coupling region of the theory, — the

region in which the the degeneracy formula (1.2) has been derived. Thus in this region the

S-duality transformation should be a symmetry of d(Qe, Qm). The problem of verifying

this directly however is that we have derived eq. (1.2) for a specific choice of the charge

vectors Qe, Qm. If we assume that (1.2) is valid for all charge vectors, — at least in the

weak coupling region, – then one can verify that this formula is indeed invariant under

S-duality transformation. Instead of taking this as a test of S-duality transformation, —

which is expected to be true anyway, – we can regard this as an indication that our for-

mula (1.2) for d(Qe, Qm) is valid for general charge vectors in the weak coupling region of

the original theory.

By performing the integral over ṽ in (1.2) by picking up residues at the poles of the

integrand, and subsequent integral over ρ̃, σ̃ by a saddle point approximation, we can

extract the behaviour of d(Qe, Qm) for large charges. The result is that up to first non-

leading order, the entropy is given by extremizing a statistical entropy function:

−Γ̃B(~τ ) =
π

2τ2
|Qe+τQm|2−ln g(τ)−ln g(−τ̄ )−(k+2) ln(2τ2)+constant+O(Q−2) (1.11)
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with respect to real and imaginary parts of the complex variable τ . Here

k =
1

2

N−1∑

s=0

c
(0,s)
0 (0) (1.12)

and

g(ρ) = e2πibαρ
∞∏

n=1

N−1∏

r=0

(
1 − e2πir/Ne2πinρ

)sr

, (1.13)

where

sr =
1

N

N−1∑

s′=0

e−2πirs′/N Q0,s′ , α̂ =
1

24
Q0,0 . (1.14)

|Qe + τ Qm|2 appearing in (1.11) is to be interpreted as

Q2
e + 2τ1 Qe · Qm + |τ |2Q2

m . (1.15)

We can calculate the black hole entropy in this theory using the entropy function

formalism [21, 22]. The low energy effective action is that of N = 4 supergravity coupled

to a certain number of matter multiplets. However stringy corrections give rise to higher

derivative terms in the action which include a Gauss-Bonnet term of the form

∆L = φ(τ, τ̄ )
{
RGµνρσRµνρσ

G − 4RGµνRµν
G + R2

G

}
, (1.16)

where τ denotes the complex structure modulus of the torus S1 × S̃1. The function φ(τ, τ̄ )

can be calculated using the method of [23] and is given by

φ(τ, τ̄ ) = −
1

64π2
((k + 2) ln τ2 + ln g(τ) + ln g(τ̄ )) + constant . (1.17)

The entropy of a dyonic black hole, after taking into account corrections due to the Gauss-

Bonnet term, is given by the extremum of the black hole entropy function [22]

E =
π

2τ2
|Qe + τQm|2 − ln g(τ) − ln g(−τ̄) − (k + 2) ln(2τ2) + constant + O(Q−2) . (1.18)

Comparing (1.11) and (1.18) we see that the black hole entropy and the statistical entropy

agree to this order.3

The rest of the paper is organised as follows. Sections 2 and 3 contain general mathe-

matical results which will be useful for studies in the later sections. In section 2 we study

in detail some properties of the two dimensional (4,4) superconformal field theory with

3The full action contains other four derivative terms besides the Gauss-Bonnet term and hence there is

no a priori justification for keeping only the Gauss-Bonnet term in the effective action. However at least

for Q2
e >> Q2

m, Qe · Qm when the coupling constant at the horizon in the asymmetric orbifold description

is small, one can show that the Gauss-Bonnet term captures the effect of complete set of four derivative

terms [24 – 27]. This is also true if we add to the action the set of all terms related to the curvature squared

term via supersymmetry transformation [28, 29]. Thus there is some non-renormalization theorem at work

at least for Q2
e >> Q2

m, Qe · Qm. Our hope is that similar non-renormalization theorems would also hold

when all the charges are of the same order.

– 5 –
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target space M modded out by the group Z̃N generated by g̃, and various properties of the

functions F (r,s)(τ, z) and their Fourier coefficients c
(r,s)
b (u). Section 3 is devoted to study-

ing various properties of the function Φ̃(ρ̃, σ̃, ṽ) and some other related functions which

are necessary for studying the duality transformation properties as well as the asymptotic

expansion of the statistical entropy. Section 4, which is the main section of this paper,

describes the computation of the degeneracy of dyons carrying a given set of charges. As

in the analysis of [9, 10] the contribution to the dyon partition function comes from three

separate sources, — the dynamics of the Kaluza-Klein monopole, the overall motion of the

D1-D5 system in the Kaluza-Klein monopole background and the motion of the D1-brane

inside the D5-brane. In section 5 we prove the ‘S-duality’ invariance of the degeneracy

formula. Section 6 describes the asymptotic expansion of the statistical entropy of the

system, defined as ln d(Qe, Qm), in the limit of large charges up to first non-leading order.

In section 7 we calculate the entropy of a black hole carrying the same charges by taking

into account the Gauss-Bonnet term in the low energy effective action and show that the

result agrees with the statistical entropy to this order.

2. A class of (4, 4) superconformal field theories

In this section we shall introduce a class of (4,4) superconformal field theories which will

be useful for later analysis.

Let M be either a K3 or a T 4 manifold, and let g̃ be an order N discrete symmetry

transformation acting on M. We shall choose g̃ in such a way that it satisfies the following

properties (not all of which are independent):

1. We require that in an appropriate complex coordinate system of M, g̃ preserves the

(0,2) and (2,0) harmonic forms of M.

2. Let Z̃N denote the group generated by g̃. We shall require that the orbifold M̂ =

M/Z̃N has SU(2) holonomy.

3. Let ωi denote the harmonic 2-forms of M and

Iij =

∫

M
ωi ∧ ωj (2.1)

denote the intersection matrix of these 2-forms in M. When we diagonalize I we get

3 eigenvalues −1 and a certain number (say P ) of the eigenvalues +1 (P = 19 for

K3 and 3 for T 4). We call the 2-forms carrying eigenvalue −1 right-handed 2-forms

and the 2-forms carrying eigenvalues +1 left-handed 2-forms. We shall choose g̃ such

that it leaves invariant all the right-handed 2-forms.

4. The (4, 4) superconformal field theory with target space M has SU(2)L × SU(2)R R-

symmetry group. We shall require that the transformation g̃ commutes with the (4,4)

superconformal symmetry and the SU(2)L×SU(2)R R-symmetry group of the theory.

(For M = T 4 the supersymmetry and the R-symmetry groups are bigger, but g̃ must

be such that only the (4,4) superconformal symmetry and the SU(2)L × SU(2)R part

of the R-symmetry group commute with g̃.)

– 6 –
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Let us now take an orbifold of this (4,4) superconformal field theory by the group Z̃N

generated by the transformation g̃, and define [19]

F (r,s)(τ, z) ≡
1

N
TrRR;egr

(
g̃s(−1)FL+FRe2πiτL0e−2πiτ̄ L̄0e2πiFLz

)
, 0 ≤ r, s ≤ N − 1 ,

(2.2)

where Tr denotes trace over all the Ramond-Ramond (RR) sector states twisted by g̃r

in the SCFT described above before we project on to g̃ invariant states, Ln, L̄n denote

the left- and right-moving Virasoro generators and FL and FR denote the world-sheet

fermion numbers associated with left and right-moving sectors in this SCFT. Equivalently

we can identify FL (FR) as twice the generator of the U(1)L (U(1)R) subgroup of the

SU(2)L × SU(2)R R-symmetry group of this conformal field theory.4 As in [7] we include

in the definition of L0, L̄0 additive factors of −cL/24 and −cR/24 respectively, so that RR

sector ground state has L0 = L̄0 = 0. Due to the insertion of (−1)FR factor in the trace

the contribution to F (r,s) comes only from the L̄0 = 0 states. As a result F (r,s) does not

depend on τ̄ .

For g̃ satisfying the conditions described earlier the functions F (r,s)(τ, z) have the form

F (r,s)(τ, z) = h
(r,s)
0 (τ)ϑ3(2τ, 2z) + h

(r,s)
1 (τ)ϑ2(2τ, 2z) . (2.3)

This follows from the fact that ϑ3(2τ, 2z) and ϑ2(2τ, 2z) are the characters of the SU(2)L
level 1 current algebra which is a symmetry of this SCFT. The functions h

(r,s)
b (τ) in turn

have expansions of the form

h
(r,s)
b (τ) =

∑

n∈ 1
N

Z− b2

4

c
(r,s)
b (4n)e2πinτ . (2.4)

This defines the coefficients c
(r,s)
b (u). We shall justify the restriction on the allowed values

of n shortly. Using the known expansion of ϑ3 and ϑ2:

ϑ3(2τ, 2z) =
∑

j∈2Z

e2πijzeπiτj2/2, ϑ2(2τ, 2z) =
∑

j∈2Z+1

e2πijzeπiτj2/2, (2.5)

we get

F (r,s)(τ, z) =

1∑

b=0

∑

j∈2Z+b,n∈Z/N

c
(r,s)
b (4n − j2)e2πinτ+2πijz . (2.6)

Since in the RR sector the L0 eigenvalue is ≥ 0 for any state, it follows from (2.3), (2.5)

that

c
(r,s)
0 (u) = 0 for u < 0, c

(r,s)
1 (u) = 0 for u < −1 . (2.7)

F (r,s)(τ, z) defined in (2.2) may be regarded as the partition function on a torus with

modular parameter τ with g̃s e2πiFLz twist along the b-cycle and g̃r twist along the a-

cycle. If (σ1, σ2) denote the coordinates of this torus, each with period 1, then under

4At this stage we are describing an abstract conformal field theory without connecting it to string theory.

In all cases where we use this conformal field theory to describe a fundamental string world-sheet theory

or world-volume theory of some soliton, we shall use the Green-Schwarz formulation. Thus the world-sheet

fermion number of this SCFT will represent the space-time fermion number in string theory.

– 7 –
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σ1 → −σ1, σ2 → −σ2, the quantum numbers r and s change sign and also z → −z. Thus

F (r,s)(τ, z) = F (−r,−s)(τ,−z). It then follows from (2.4)), ((2.6), that

h
(r,s)
b (τ) = h

(−r,−s)
b (τ) , c

(r,s)
b (u) = c

(−r,−s)
b (u) . (2.8)

Furthermore, since under (σ1, σ2) → (σ1 + σ2, σ2) the modular parameter τ gets shifted

by 1 and (r, s) → (r, s + r), we must have F (r,s+r)(τ + 1, z) = F (r,s)(τ, z). Since (r, s) are

defined modulo N we get F (r,s)(τ, z) = F (r,s)(τ + N, z). This is the physical origin of the

restriction n ∈ Z/N in (2.6) and n ∈ Z/N − b2/4 in (2.4).

The n = 0 terms in the expansion (2.6) is given by the contribution to (2.2) from the

RR sector states with L0 = L̄0 = 0. For r = 0, ı.e. in the untwisted sector, these states are

in one to one correspondence with harmonic (p, q) forms on M, with (p − 1) and (q − 1)

measuring the quantum numbers FL and FR [30, 31]. Thus N c
(0,s)
0 (0), being N× the

coefficient of the n = 0, j = 0 term in (2.6), measures the number of harmonic (1, q) forms

weighted by (−1)q−1g̃s, and N c
(0,s)
1 (−1), being N× the coefficient of the n = 0, j = −1

(or j = 1) term in (2.6), measures the number of harmonic (0, q) (or (2, q)) forms weighted

by (−1)q g̃s. If M = K3 then the only (0, q) forms are (0, 0) and (0, 2) forms both of which

are invariant under g̃. Thus we have

c
(0,s)
1 (−1) =

2

N
for M = K3 . (2.9)

On the other hand for M = T 4 one can represent the explicit action of g̃ in an appropriate

complex coordinate system (z1, z2) as

dz1 → e2πi/Ndz1, dz2 → e−2πi/Ndz2 , dz̄1 → e−2πi/Ndz̄1, dz̄2 → e2πi/Ndz̄2 , (2.10)

so that it preserves the (2, 0) and (0, 2) forms dz1 ∧ dz2 and dz̄1 ∧ dz̄2. Using this one can

work out its action on all the 2-, 3- and 4-forms:

dz1 ∧ dz2 → dz1 ∧ dz2, dz1 ∧ dz̄1 → dz1 ∧ dz̄1, dz1 ∧ dz̄2 → e4πi/N dz1 ∧ dz̄2,

dz̄1 ∧ dz̄2 → dz̄1 ∧ dz̄2, dz2 ∧ dz̄2 → dz2 ∧ dz̄2, dz̄1 ∧ dz2 → e−4πi/N dz̄1 ∧ dz2 ,

(2.11)

dz1 ∧ dz2 ∧ dz̄1 → e−2πi/N dz1 ∧ dz2 ∧ dz̄1, dz1 ∧ dz2 ∧ dz̄2 → e2πi/N dz1 ∧ dz2 ∧ dz̄2,

dz̄1 ∧ dz̄2 ∧ dz1 → e2πi/N dz̄1 ∧ dz̄2 ∧ dz1, dz̄1 ∧ dz̄2 ∧ dz2 → e−2πi/N dz̄1 ∧ dz̄2 ∧ dz2,

(2.12)

dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 → dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 . (2.13)

This shows that the (0, 0) and (0, 2) forms are invariant under g̃ but the two (0, 1) forms

carry g̃ eigenvalues ±2π/N . Thus we have

c
(0,s)
1 (−1) =

1

N

(
2 − e2πis/N − e−2πis/N

)
for M = T 4 . (2.14)

(2.11) also shows that g̃ acts trivially on four of the 2-forms, and acts as a rotation by 4π/N

in the two dimensional subspace spanned by the other two 2-forms. By writing the 2-forms
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in the real basis one can easily verify that the 2-forms which transform non-trivially under

g̃ correspond to left-handed 2-forms. These results will be useful later.

Another useful set of results emerges by taking the z → 0 limit of eqs. (2.2) and (2.6).

This gives
1∑

b=0

∑

j∈2Z+b,n∈Z/N

c
(r,s)
b (4n − j2)e2πinτ =

1

N
Qr,s , (2.15)

where

Qr,s = TrRR;egr

(
g̃s(−1)FL+FRe2πiτL0e−2πiτ̄ L̄0

)
, 0 ≤ r, s ≤ N − 1 . (2.16)

Qr,s is independent of τ and τ̄ since the (−1)FL+FR insertion in the trace makes the con-

tribution from the (L0, L̄0) 6= (0, 0) states cancel. Thus (2.15) gives

1∑

b=0

∑

j∈2Z+b

c
(r,s)
b (4n − j2) =

1

N
Qr,s δn,0 . (2.17)

Setting n = 0 in the above equation and using eq. (2.7) we get

Qr,s = N
(
c
(r,s)
0 (0) + 2 c

(r,s)
1 (−1)

)
. (2.18)

For r = 0, ı.e. in the untwisted sector, the trace in (2.16) reduces to a sum over the

harmonic forms of M. Since FL + FR is mapped to the degree of the harmonic form, Q0,s

has the interpretation of trace of (−1)pg̃s over the harmonic p-forms of M. In particular

we have

Q0,0 = χ(M) , (2.19)

where χ(M) denotes the Euler number of M.

For later use we shall define

F̂ (r,s)(τ, z) =
1

N

N−1∑

s′=0

N−1∑

r′=0

e−2πirs′/Ne2πir′s/N F (r′,s′)(τ, z) . (2.20)

F̂ (r,s)(τ, z) satisfies properties similar to that of F (r,s)(τ, z). In particular we have the

relations:

F̂ (r,s)(τ, z) =

1∑

b=0

∑

j∈2Z+b,n∈Z/N

ĉ
(r,s)
b (4n − j2)e2πinτ+2πijz , (2.21)

where

ĉ
(r,s)
b (u) =

1

N

N−1∑

r′=0

N−1∑

s′=0

e2πi(sr′−rs′)/N c
(r′,s′)
b (u) . (2.22)

We also have the analog of eq. (2.17)

1∑

b=0

∑

j∈2Z+b

ĉ
(r,s)
b (4n − j2)e2πinτ =

1

N
Q̂r,s δn,0 , (2.23)

where

Q̂r,s =
1

N

N−1∑

s′=0

N−1∑

r′=0

e2πi(sr′−rs′)/N Qr′,s′ . (2.24)
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3. Siegel modular forms from threshold integrals

In this section we shall prove various properties of Φ̃ defined in (1.10) by relating it to a

‘threshold integral’ [32]. We begin by defining:

Ω =

(
ρ v

v σ

)
, (3.1)

and

1

2
p2

R =
1

4det ImΩ
| − m1ρ + m2 + n1σ + n2(σρ − v2) + jv|2,

1

2
p2

L =
1

2
p2

R + m1n1 + m2n2 +
1

4
j2 , (3.2)

where ρ, σ and v are three complex variables. We now consider the ‘threshold integrals’

Ĩ(ρ, σ, v) =

N−1∑

r,s=0

1∑

b=0

Ĩr,s,b , Î(ρ, σ, v) =

N−1∑

r,s=0

1∑

b=0

Îr,s,b , (3.3)

where

Ĩr,s,b =

∫

F

d2τ

τ2

∑

m1,m2,n2∈Z

n1∈Z+ r
N

,j∈2Z+b

qp2
L/2q̄p2

R/2e2πim1s/Nh
(r,s)
b (τ) , (3.4)

and

Îr,s,b =

∫

F

d2τ

τ2

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r,j∈2Z+b

qp2
L/2q̄p2

R/2e2πim2sh
(r,s)
b (τ) , (3.5)

with

q ≡ e2πiτ . (3.6)

Let us now introduce another set of variables (ρ̃, σ̃, ṽ) related to (ρ, σ, v) via the relations

ρ̃ =
1

N

1

2v − ρ − σ
, σ̃ = N

v2 − ρσ

2v − ρ − σ
, ṽ =

v − ρ

2v − ρ − σ
, (3.7)

or equivalently,

ρ =
ρ̃σ̃ − ṽ2

Nρ̃
, σ =

ρ̃σ̃ − (ṽ − 1)2

Nρ̃
, v =

ρ̃σ̃ − ṽ2 + ṽ

Nρ̃
. (3.8)

We also define

Ω̃ =

(
ρ̃ ṽ

ṽ σ̃

)
. (3.9)

By relabelling the indices m1, m2, n1, n2 in eqs. (3.4)–(3.5) one can easily prove the

relations

Î(ρ, σ, v) = Ĩ(ρ̃, σ̃, ṽ) . (3.10)

In the same way one can show that under a transformation of the form

Ω → (AΩ + B)(CΩ + D)−1 , (3.11)
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Î(ρ, σ, v) remains invariant for the following choices of the matrices A, B, C, D:

(
A B

C D

)
=




a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1


 , ad − bc = 1, c = 0 mod N , a, d = 1 mod N

(
A B

C D

)
=




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 ,

(
A B

C D

)
=




1 0 0 µ

λ 1 µ 0

0 0 1 −λ

0 0 0 1


 , λ, µ ∈ Z.

(3.12)

The group of transformations generated by these matrices is a subgroup of the Siegel

modular group Sp(2, Z); we shall denote this subgroup by Ĝ.5 Via eq. (3.10) this also

induces a group of symmetry transformations of Ĩ(ρ̃, σ̃, ṽ); we shall denote this group by

G̃.

We can now follow the procedure of [7] to evaluate the integrals Ĩ and Î. Since the

procedure is identical to that in [7], we shall only quote the final results:

Ĩ(ρ, σ, v) = −2 ln
[
(det ImΩ)k

]
− 2 ln Φ̃(ρ, σ, v) − 2 ln

¯̃
Φ(ρ, σ, v) + constant (3.13)

and

Î(ρ, σ, v) = −2 ln
[
(det ImΩ)k

]
− 2 ln Φ̂(ρ, σ, v) − 2 ln

¯̂
Φ(ρ, σ, v) + constant (3.14)

where

k =
1

2

N−1∑

s=0

c
(0,s)
0 (0) , (3.15)

Φ̃(ρ, σ, v)=e2πi(eαρ+eγσ+v)
1∏

b=0

N−1∏

r=0

∏

k′∈Z+ r
N

,l∈Z,j∈2Z+b

k′,l≥0,j<0 for k′=l=0

(1 − e2πi(k′σ+lρ+jv))
PN−1

s=0 e−2πisl/N c
(r,s)
b (4k′l−j2)

(3.16)

and

Φ̂(ρ, σ, v) = e2πi(bαρ+bγσ+v)
1∏

b=0

N−1∏

r,s=0

∏

(k′,l)∈Z,j∈2Z+b

k′,l≥0,j<0 for k′=l=0

{
1 − e2πir/N e2πi(k′σ+lρ+jv)

}bc(r,s)
b (4k′l−j2)

(3.17)

5For prime values of N the group bG is identical to the group G introduced in [6].
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with ĉ
(r,s)
b (u) given in (2.22), and

α̃ =
1

24N
Q0,0 −

1

2N

N−1∑

s=1

Q0,s
e−2πis/N

(1 − e−2πis/N )2
, γ̃ =

1

24N
Q0,0,

α̂ = γ̂ =
1

24
Q0,0 . (3.18)

The quantities Qr,s have been defined in eqs. (2.16). In arriving at (3.16)–(3.17) we have

used the relations (2.8), (2.17) and also (2.9), (2.14). The constant k defined in (3.15) has

the interpretation of being half the number of g̃ invariant (1, q) forms weighted by (−1)q+1.

It now follows from (3.10), (3.13) and (3.14) that

Φ̃(ρ̃, σ̃, ṽ) = C1 (2v − ρ − σ)k Φ̂(ρ, σ, v) (3.19)

where C1 is a constant. Furthermore given the invariance of Ĩ and Î under the groups G̃

and Ĝ, it follows that Φ̃ and Φ̂ transform as modular forms of weight k under the groups

G̃ and Ĝ respectively.

From (3.17), (2.9), (2.14) and (2.23) it is easy to see that for small v

Φ̂(ρ, σ, v) = −4π2 v2 g(ρ) g(σ) + O(v4) (3.20)

where

g(ρ) = e2πibαρ
∞∏

n=1

N−1∏

r=0

(
1 − e2πir/Ne2πinρ

)sr

, (3.21)

sr =
1

N

N−1∑

s=0

Q̂r,s =
1

N

N−1∑

s′=0

e−2πirs′/N Q0,s′ . (3.22)

Eq. (3.19) then gives, for small v, ı.e. small ρ̃σ̃ − ṽ2 + ṽ,

Φ̃(ρ̃, σ̃, ṽ) = −4π2 C1 (2v − ρ − σ)k v2g(ρ) g(σ) + O(v4) . (3.23)

sr has the interpretation of being the number of harmonic p-forms in M with g̃ eigenvalue

e2πir/N weighted by (−1)p. Thus it is an integer.

We can determine the locations of the other zeroes and poles of Φ̃(ρ̃, σ̃, ṽ) by identifying

the logarithmic singularities of Ĩ(ρ̃, σ̃, ṽ) as in [9]. One finds that Φ̃(ρ̃, σ̃, ṽ) has possible

zeroes at (
n2(σ̃ρ̃ − ṽ2) + jṽ + n1σ̃ − ρ̃m1 + m2

)
= 0 (3.24)

for m1,m2, n2 ∈ Z, n1 ∈ 1
N Z, j ∈ 2Z + 1, m1n1 + m2n2 + j2

4 = 1
4 .

The order of the zero is given by

N−1∑

s=0

e2πim1s/Nc
(r,s)
1 (−1), r = N n1 mod N . (3.25)

For N ≥ 5 there are additional possible zeroes of Φ̃(ρ̃, σ̃, ṽ) at

(
n2(σ̃ρ̃ − ṽ2) + jṽ + n1σ̃ − ρ̃m1 + m2

)
= 0 (3.26)
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for m1,m2, n2 ∈ Z, n1 ∈ 1
N Z, j ∈ 2Z + 1, m1n1 + m2n2 + j2

4 = 1
4 − 1

N .

The order of the zero is
N−1∑

s=0

e2πim1s/N c
(r,s)
1

(
−1 +

4

N

)
, r = Nn1 mod N . (3.27)

(3.25) has the interpretation as the number of g̃r twisted states with g̃ eigenvalue e−2πim1/N ,

FL = 1 (or FL = −1) and L0 = L̄0 = 0, weighted by (−1)FL+FR . (3.27) has the interpreta-

tion as the number of g̃r twisted states with g̃ eigenvalue e−2πim1/N , FL = 1 (or FL = −1),

L0 = 1/N and L̄0 = 0, weighted by (−1)FL+FR . Thus both numbers are integers.

4. Dyon partition function

We now consider type IIB string theory compactified on M×S1×S̃1, M being either K3 or

T 4. For definiteness we shall label S1 and S̃1 by coordinates with period 2π. We then take

an orbifold of this theory by a discrete ZN transformation generated by a transformation g,

where g involves a 2π/N translation along S1 together with an order N transformation g̃ on

M described in section 2. Due to the properties of g̃ described earlier, the resulting orbifold

preserves all the supersymmetries of type IIB string theory compactified on K3×S1 × S̃1.

Thus if M is T 4 then the orbifolding breaks half of the supersymmetries whereas for

M = K3 the orbifolding preserves all the supersymmetries. By making an S-duality

transformation of type IIB string theory, followed by a T-duality transformation on the

circle S̃1 and a string-string duality transformation relating type IIA string theory on M

to type IIA or heterotic string theory on T 4, one can obtain a dual description of these

theories as asymmetric orbifolds of heterotic on T 6 for M = K3 and asymmetric orbifolds

of type IIB on T 6 for M = T 4. In this description all the space-time supersymmetries

arise from the right-moving sector of the fundamental string world-sheet [9, 10]. We shall

choose the coordinates along the circles S1 and S̃1 such that before the orbifold projection

they have periodicity 2π.

In the original description of the theory as type IIB on (M×S1× S̃1)/ZN we consider

a system containing a single D5-brane wrapped on M × S1/ZN , Q1 D1-branes wrapped

on S1/ZN , momentum −n along S1, momentum J along S̃1 and a Kaluza-Klein monopole

associated with the compact circle S̃1. In the dual asymmetric orbifold description, the

quantum numbers n and the single Kaluza-Klein monopole charge in the original theory

appear as momentum −n and single fundamental string wound along S1. Hence they form

part of the electric charge vector Qe. On the other hand the D1-brane, D5-brane and the

momentum along S̃1 in the original theory correspond to a single Kaluza-Klein monopole

and (Q1 − β) H-monopoles associated with the dual circle of S̃1, and J H-monopoles

associated with the circle S1/ZN in the dual theory, where

β =
1

24
χ(M) , (4.1)

χ(M) being the Euler character of M. Thus they form part of the magnetic charge vector

Qm, and we have [9, 10]

Q2
e ≡ Qe · Qe = 2n/N, Q2

m ≡ Qm · Qm = 2(Q1 − β), Qe · Qm = J , (4.2)
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where · denotes T-duality invariant inner product. The −β term in the expression for

Q2
m reflects the fact that a D5-brane wrapped on M carries −χ(M)/24 unit of D1-brane

charge.

The S-duality symmetry of the theory in the asymmetric orbifold description is related

to the global diffeomorphism symmetry of the torus S1 × S̃1 in the original description.

More precisely it is the subgroup of this global diffeomorphism group which leaves invariant

2π/N translation along S1, and is represented by the Γ1(N) matrices

(
a b

c d

)
satisfying

ad − bc = 1, a, d ∈ 1 + NZ, c ∈ NZ, b ∈ Z . (4.3)

The duality transformation acts on the electric and the magnetic charge vectors as
(

Qe

Qm

)
→

(
a b

c d

)(
Qe

Qm

)
. (4.4)

Our goal is to find the spectrum of 1/4 BPS states with charge quantum numbers

(Qe, Qm). Since these states break 12 of the 16 supersymmetry generators of the theory,

quantization of the fermionic zero modes associated with the broken supersymmetry gen-

erators gives rise to 26 = 64-fold degeneracy, with equal number of bosonic and fermionic

states. This 64-fold degeneracy is associated with the size of the 1/4-BPS supermultiplet,

and a generic 1/4 BPS state is obtained by tensoring the basic supermultiplet contain-

ing 64 states with helicity ranging from −3
2 to 3

2 with a supersymmetry invariant state

which could be either bosonic of fermionic. We shall call such supermultiplets bosonic

and fermionic supermultiplets respectively, and denote by d(Qe, Qm) the number of 1/4

BPS bosonic supermultiplets minus the number of 1/4 BPS fermionic supermultiplets for

a given set of charges (Qe, Qm).

Another description of d(Qe, Qm), equivalent to the one given above, is as follows [23].

If h denotes the helicity of a state, then

d(Qe, Qm) =
26

6!
Tr

(
(−1)2hh6

)
, (4.5)

where the trace is taken over all 1/4 BPS states with charge quantum numbers (Qe, Qm).

In the present example the charges (Qe, Qm) are labelled by the set of integers Q1, n

and J together with the number of D5-branes along M×S1 and the number of Kaluza-Klein

monopoles associated with the circle S̃1 in the original description, both of which have been

taken to be 1. We shall denote by h(Q1, n, J) the number of bosonic supermultiplets minus

the number of fermionic supermultiplets carrying quantum numbers (Q1, n, J). Computa-

tion of h(Q1, n, J) is best done in the weak coupling limit of the original description of the

system where the quantum numbers n and J arise from three different sources [9]: the ex-

citations of the Kaluza-Klein monopole which can carry certain amount of momentum −l′0
along S1, the overall motion of the D1-D5 system in the background of the Kaluza-Klein

monopole which can carry certain amount of momentum −l0 along S1 and j0 along S̃1 and

the motion of the D1-branes in the plane of the D5-brane carrying total momentum −L

along S1 and J ′ along S̃1. Thus we have

l′0 + l0 + L = n, j0 + J ′ = J . (4.6)
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Let

f(ρ̃, σ̃, ṽ) =
∑

Q1,n,J

h(Q1, n, J)e2πi(eρn+eσQ1/N+evJ) , (4.7)

denote the partition function of the system. Then in the weak coupling limit we can ignore

the interaction between the three different sets of degrees of freedom described above, and

f(ρ̃, σ̃, ṽ) is obtained as a product of three separate partition functions:

f(ρ̃, σ̃, ṽ) =
1

64

∑

Q1,L,J ′

dD1(Q1, L, J ′)e2πi(eσQ1/N+eρL+evJ ′)




∑

l0,j0

dCM(l0, j0)e
2πil0 eρ+2πij0ev







∑

l′0

dKK(l′0)e
2πil′0 eρ


 , (4.8)

where dD1(Q1, L, J ′) is the degeneracy of Q1 D1-branes moving in the plane of the D5-brane

carrying momenta (−L, J ′) along (S1, S̃1), dCM(l0, j0) is the degeneracy associated with

the overall motion of the D1-D5 system in the background of the Kaluza-Klein monopole

carrying momenta (−l0, j0) along (S1, S̃1) and dKK(l′0) denotes the degeneracy associated

with the excitations of a Kaluza-Klein monopole carrying momentum −l′0 along S1. The

factor of 1/64 in (4.8) accounts for the fact that a single 1/4 BPS supermultiplet has

64 states. In each of these sectors we count the degeneracy weighted by (−1)F with

F denoting space-time fermion number of the state, except for the parts obtained by

quantizing the fermion zero-modes associated with the broken supersymmetry generators.

Since a Kaluza-Klein monopole in type IIB string theory on K3× S1 × S̃1 breaks 8 of the

16 supersymmetries, quantization of the fermion zero modes associated with the broken

supersymmetry generators give rise to a 16-fold degeneracy which appears as a factor in

dKK(l′0). Furthermore since a D1-D5 system in the background of a Kaluza-Klein monopole

in type IIB on K3 × S1 × S̃1 breaks 4 of the 8 remaining supersymmetry generators, we

get a 4-fold degeneracy from the associated fermion zero modes appearing as a factor in

dCM(l0, j0). This factor of 16 × 4 cancel the 1/64 factor in (4.8). After separating out this

factor, we count the contribution to the degeneracy from the rest of the degrees of freedom

weighted by a factor of (−1)F .

We shall now compute each of the three pieces, dKK(l′0), dCM(l0, j0) and dD1(Q1, L, J ′)

separately.

4.1 Counting states of the Kaluza-Klein monopole

We consider type IIB string theory in the background M × TN × S1 where TN denotes

Taub-NUT space. This describes type IIB string theory compactified on M× S1 × S̃1 in

the presence of a Kaluza-Klein monopole, with S̃1 identified with the asymptotic circle of

the Taub-NUT space. We now take an orbifold of the theory by a ZN group generated by

the transformation g. Our goal is to compute the degeneracy of the half-BPS states of the

Kaluza-Klein monopole carrying momentum −l′0 along S1.

The world-volume of the Kaluza-Klein monopole is 5+1 dimensional with the five

spatial directions lying along M×S1. By taking the size of M to be much smaller than that
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of S1 we shall regard this as a 1+1 dimensional theory, obtained by dimensional reduction

of the original 5+1 dimensional theory on M. Since the supersymmetry generators of

type IIB string theory on K3 are chiral, the world-volume supersymmetry on the Kaluza-

Klein monopole will also be chiral, acting on the right-moving degrees of freedom of the

1+1 dimensional field theory. Thus the BPS states of the Kaluza-Klein monopole will

correspond to states in this field theory where the right-moving oscillators are in their

ground state. In order to count these states we first need to determine the low energy

limit of this world-volume theory. Since a Kaluza-Klein monopole has three transverse

directions, there are three non-chiral massless bosonic fields on the world-sheet associated

with oscillations in these transverse directions. Since Taub-NUT space has a normalizable

self-dual harmonic 2-form [33, 34], we can get two additional non-chiral scalar modes on

the world-sheet of the Kaluza-Klein monopole by reducing the two 2-form fields of type IIB

string theory along this harmonic 2-form. Finally, the self-dual four form field of type IIB

theory, reduced along the tensor product of the harmonic 2-form on TN and a harmonic

2-form on M, can give rise to a chiral scalar field on the world-sheet. The chirality of the

scalar field is correlated with whether the corresponding harmonic 2-form on M is self-

dual or anti-self-dual. This gives 3 right-moving and P left-moving scalars where P = 3

for M = T 4 and 19 for M = K3. Thus we have altogether 8 right-moving scalar fields and

P + 5 left-moving scalar fields on the world-volume of the Kaluza-Klein monopole.

Next we turn to the spectrum of massless fermions in this world-volume theory. These

typically arise from broken supersymmetry generators. Since type IIB string theory on K3

has 16 unbroken supersymmetries6 of which 8 are broken in the presence of the Taub-NUT

space, we have 8 fermionic zero modes. Since the supersymmetry generators in type IIB on

K3 are chiral, the fermionic zero modes associated with broken supersymmetries are also

chiral, and are right-moving on the world-sheet. On the other hand if we take type IIB on

T 4 we have altogether 32 unbroken supercharges of which 16 are broken in the presence of

the Taub-NUT space. Since type IIB on T 4 is a non-chiral theory, we have 8 right-moving

and 8 left-moving zero modes.

To summarize, the world-sheet theory describing the dynamics of the Kaluza-Klein

monopole always contains 8 bosonic and 8 fermionic right-moving modes. For M = K3

the world-sheet theory has 24 left-moving bosonic modes and no left-moving fermionic

modes whereas for M = T 4 the world-sheet theory has 8 left-moving bosonic and 8 left-

moving fermionic modes.

We shall now determine the g̃ transformation properties of these modes. Since g̃

commutes with the supersymmetries of type IIB on K3, all the right-handed fermions

living on the world-sheet theory, associated with the broken supersymmetry generators in

the presence of Kaluza-Klein monopole, must be neutral under g̃. Since g̃ also commutes

with the unbroken supersymmetry generators which transforms the right-moving world-

6In this section we shall refer to unbroken supersymmetries in various context. Some time it may

refer to the symmetry of a given compactification, and some time it will refer to the symmetry of a given

brane configuration. The reader must carefully examine the context in which the symmetry is being

discussed, since the number of unbroken generators and their action on various fields depend crucially on

this information.
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sheet fermions into right-moving world-sheet scalars and vice versa, the 8 right-moving

bosons on the world-volume of the Kaluza-Klein monopole must also be invariant under g̃.

Five of the left-moving bosons, associated with the 3 transverse degree of freedom and the

modes of the 2-form fields along the Taub-NUT space are also invariant under g̃ since g̃

acts trivially on the Taub-NUT space. The action of g̃ on the other P left-moving bosons is

represented by its action on the P left-handed 2-forms on M. This completely determines

the action of g̃ on all the P + 5 left-moving bosons. Since from the analysis of section 2 we

know that g̃ leaves invariant the harmonic 0-form, 4-form and all the three right-handed

2-forms on M, we see that the net action of g̃ on the (P + 5) left-handed bosonic fields

on the world-sheet of the Kaluza-Klein monopole is in one to one correspondence with the

action of g̃ on the (P + 5) even degree harmonic forms on M, consisting of P left-handed

2-forms, three g̃ invariant right-handed 2-forms, a g̃ invariant 0-form and a g̃ invariant

4-form.

What remains is to determine the action of g̃ on the left-moving fermions. We shall

now show that this can be represented by the action of g̃ on the harmonic 1- and 3-forms

of M. For M = K3 there are no 1- or 3-forms and no left-moving fermions on the world-

sheet of the Kaluza-Klein monopole. Hence the result holds trivially. For M = T 4 there

are eight left-moving fermions and eight right-moving fermions. These are associated with

the sixteen supersymmetry generators which are broken in the presence of a Kaluza-Klein

monopole in type IIB string theory on T 4 × S1 × S̃1, and hence transform in the spinor

representation of the tangent space SO(4)‖ group associated with the T 4 direction. Now

g̃ is an element of this group describing 2π/N rotation in one plane and −2π/N rotation

in an orthogonal plane. Translating this into the spinor representation we see that the net

effect is to leave half of the eight fermions invariant, rotate two pairs of fermions by 2π/N

and rotate the other two pairs of fermions by −2π/N . Since we have already seen that the

right-moving fermions are neutral under g̃, the action of g̃ on the left-moving fermions is to

rotate two pairs of fermions by 2π/N and another two pairs of fermions by −2π/N . This is

identical to the action of g̃ on the harmonic 1- and 3-forms of T 4 given in (2.10) and (2.12).

Thus the problem of studying the g̃ transformation properties of the left-moving degrees

of freedom on the world-sheet reduces to the problem of finding the action of g̃ on the

even and odd degree harmonic forms of M. We now map this problem into an equivalent

problem as follows. Let us consider a (4,4) superconformal σ-model in (1+1) dimension

with target space M as described in section 2 and consider the quantity

Q0,s = TrRR

(
(−1)FL+FR g̃se2πiτL0e−2πiτ̄ L̄0

)
, (4.9)

with Qr,s defined through (2.16). As discussed at the end of section 2, Q0,s counts the

difference between the number of even degree harmonic forms and odd degree harmonic

forms, weighted by g̃s. Using the results of our previous analysis this can be rewritten as

Q0,s = number of left handed bosons weighted by g̃s

−number of left handed fermions weighted by g̃s . (4.10)

Let nl be the number of left-handed bosons minus fermions carrying g̃ quantum number
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e2πil/N . Then we have from (4.10)

nl =
1

N

N−1∑

s=0

e−2πils/N Q0,s . (4.11)

Clearly nl is invariant under l → l + N .

We now turn to the problem of counting the spectrum of BPS excitations of the Kaluza-

Klein monopole. First of all note that since there are eight right-moving fermions neutral

under g̃, the zero modes of these fermions are ZN invariant. These eight fermionic zero

modes may be regarded as the goldstone modes associated with broken supersymmetry

generators. Since type IIB string theory on M × S1/ZN has 16 supersymmetries, and

since a Kaluza-Klein monopole breaks half of these supersymmetries, we expect precisely

eight fermionic zero modes associated with the broken supersymmetry generators. Upon

quantization this produces a 16-fold degeneracy of states with equal number of bosonic

and fermionic states. This is the correct degeneracy of a single irreducible short multiplet

representing half BPS states in type IIB string theory compactified on M× S1/ZN , and

will eventually become part of the 64-fold degeneracy of a 1/4 BPS supermultiplet once

we tensor this state with the state of the D1-D5 system. Since supersymmetry acts on

the right-moving sector of the world-volume theory, BPS condition requires that all the

non-zero mode right-moving oscillators are in their ground state. Thus the spectrum of

BPS states is obtained by taking the tensor product of this irreducible 16 dimensional

supermultiplet with either fermionic or bosonic excitations involving the left-moving de-

grees of freedom on the world-volume of the Kaluza-Klein monopole. We shall denote by

dKK(l′0)/16 the degeneracy of states associated with left-moving oscillator excitations car-

rying total momentum −l′0, weighted by (−1)FL where FL denotes the contribution to the

space-time fermion number from the left-moving modes on the world-sheet. Thus dKK(l′0)

calculates the total degeneracy of half-BPS states weighted by (−1)FL . In order to calculate

dKK(l′0) we need to count the number of ways the total momentum −l′0 can be distributed

among the different left-moving oscillator excitations, subject to the requirement of ZN

invariance. Since a mode carrying momentum −l along S1 picks up a phase of e−2πil/N

under 2π/N translation along S1, it must pick up a phase of e2πil/N under g̃. Thus the

number of left-handed bosonic minus fermionic modes carrying momentum l along S1 is

given by nl given in eq. (4.11). The number dKK(l′0)/16 can now be identified as the num-

ber of different ways the total momentum l′0 can be distributed among different oscillators,

there being nl bosonic minus fermionic oscillators carrying momentum l. This gives

∑

l′0

dKK(l′0)e
2πieρl′0 = 16 e2πiCeρ

∞∏

l=1

(1 − e2πileρ)−nl . (4.12)

The constant C represents the l′0 quantum number of the vacuum of the Kaluza-Klein

monopole when all oscillators are in their ground state. In order to determine C let us

consider the dual asymmetric orbifold description of the system where the Kaluza-Klein

monopole gets mapped to an elementary heterotic or type IIA string along S1. If ĝ denotes

the image of g in the asymmetric orbifold description, then since ĝ involves a translation
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by 2π/N along S1, the elementary string along S1 is in the sector twisted by ĝ. Since

the modes of the Kaluza-Klein monopole get mapped to the degrees of freedom of the

fundamental heterotic or type IIA string, there are nl left moving bosonic minus fermionic

modes which pick up a phase of e2πil/N under the action of ĝ. C now represents N× the

contribution to the ground state L0 eigenvalue from all the left-moving oscillators, — the

multiplicative factor of N arising due to the fact that in the orbifold theory the S1 direction

has period 2π/N , and hence the world-sheet σ coordinate of the dual fundamental string

is to be identified with N× the coordinate along S1. Since a bosonic and a fermionic mode

twisted by a phase of e2πiϕ for 0 ≤ ϕ ≤ 1 gives a contribution of − 1
24 + 1

4 ϕ (1 − ϕ) and
1
24 − 1

4 ϕ (1 − ϕ) respectively to the ground state L0 eigenvalue, we have7

C = −
N

24

N−1∑

l=0

nl +
N

4

N−1∑

l=0

nl
l

N

(
1 −

l

N

)
. (4.13)

Using the expression for nl given in (4.11) we get

C = −
1

24

N−1∑

s=0

Q0,s

N−1∑

l=0

e−2πils/N +
1

4

N−1∑

s=0

Q0,s

N−1∑

l=0

l

N

(
1 −

l

N

)
e−2πils/N . (4.14)

The sum over l can be performed separately for s = 0 and s 6= 0, and yields the answer

C = −α̃ , (4.15)

with α̃ defined as in (3.18):

α̃ =
1

24N
Q0,0 −

1

2N

N−1∑

s=1

Q0,s
e−2πis/N

(1 − e−2πis/N )2
. (4.16)

The left-right level matching condition of the dual heterotic string theory guarantees that

C and hence α̃ must be an integer. Using (4.11), (2.18), (4.15) we can rewrite (4.12) as

∑

l′0

dKK(l′0)e
2πieρl′0 = 16 e−2πieαeρ

∞∏

l=1

(1 − e2πileρ)
−

PN−1
s=0 e−2πils/N

“
c
(0,s)
0 (0)+2c

(0,s)
1 (−1)

”

. (4.17)

4.2 Counting states associated with the overall motion of the D1-D5 system

We shall now turn to the computation of the contribution to the partition function from

the overall motion of the D1-D5 system. This has two components, — the center of mass

motion of the D1-D5 system along the Taub-NUT space transverse to the plane of the

D5-brane, and the dynamics of the Wilson lines on the D5-brane along M. The first

component is present irrespective of the choice of M but the second component exits only

if M has non-contractible one cycles, ı.e. for M = T 4.

The contribution from the first component is clearly independent of the choice of M

and has been found in [9]. If dtransverse(l0, j0) denotes the number of states associated with

7We are counting the contribution from a mode and its complex conjugate separately.
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the transverse motion of the system, carrying momentum −l0 along S1 and j0 along S̃1,

then we have
∑

l0,j0

dtransverse(l0, j0)e
2πil0 eρ+2πij0ev = 4 e−2πiev (1 − e−2πiev)−2

∞∏

n=1

{
(1 − e2πinN eρ)4 (1 − e2πinN eρ+2πiev)−2 (1 − e2πinN eρ−2πiev)−2

}
. (4.18)

The factor of 4 comes from the quantization of the right-moving fermionic zero modes [9].

As before, in the counting of states associated with the left-moving oscillators we include

a weight factor of (−1)FL . In expressing the right hand side of (4.18) as a series we

always expand the terms inside the product in positive powers of e2πieρ. However for the

e−2πiev(1 − e−2πiev)−2 factor we have two choices, — either expand it in powers of e−2πiev,

or rewrite is as e2πiev(1 − e2πiev)−2 and expand it in powers of e2πiev. These two different

ways of expanding yield different spectrum, and the correct choice depends on the angle

between the circles S1 and S̃1 [9, 34, 35]. As this angle passes through 90◦ the spectrum

changes discontinuously.

Let us now compute the contribution to the partition function from the dynamics

of the Wilson lines for M = T 4. For this we can ignore the presence of the Kaluza-

Klein monopole and the D1-branes, and consider the dynamics of a D5-brane wrapped

on T 4 × S1. Taking the T 4 to have small size we can regard the world-volume theory as

(1+1) dimensional. This has eight bosonic modes associated with four Wilson lines and

four transverse coordinates, but we shall only be interested in the dynamics of the Wilson

lines. Similarly there are eight non-chiral fermionic modes, but four of these, related to the

transverse bosonic modes by the unbroken supersymmetry algebra that commutes with g̃,

have already been accounted for in the partition function (4.18). Thus we shall consider

only four of the fermionic modes which are superpartners of the four Wilson lines under

the unbroken supersymmetry algebra.

Now g̃ acts as a rotation by 2π/N on one pair of Wilson lines and as a rotation by

−2π/N on the other pair. Since the unbroken supersymmetry algebra commutes with g̃

and furthermore, its action on the D5-brane world-volume is non-chiral, g̃ must act as

rotation by 2π/N on one pair of fermions and −2π/N on the other pair both in the left

and the right-moving sector. In order to be ZN invariant, the modes which pick a phase of

e2πi/N under g̃ must carry momentum along S1 of the form Nk − 1 for integer k, whereas

modes which pick a phase of e−2πi/N under g̃ must carry momentum along S1 of the form

Nk + 1 for integer k. As a result, both in the left and the right-moving sector, we have a

pair of bosons and a pair of fermions carrying S1 momentum of the form Nk + 1, and a

pair of bosons and a pair of fermions carrying S1 momentum of the form Nk − 1.

Eventually when we place this in the background of the Kaluza-Klein monopole, only

the supersymmetry associated with the right-moving modes remain unbroken. Thus in

order to get a BPS state of the final supersymmetry algebra we must put all the right-

moving oscillators in their ground state and consider only left moving excitations.

In order to calculate the partition function associated with these modes we also need

information about their j0 quantum numbers. Near the center of Taub-NUT the j0 quan-
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tum number corresponds to the sum of the angular momenta in the two planes transverse to

the D5-brane. The left- and right-moving bosonic modes associated with the Wilson lines

are neutral under rotation in planes transverse to the D5-brane and hence do not carry

any j0 charge. However the fermions, being in the spinor representation of the tangent

space group of the transverse space, do carry j0 charge. Since the net j0 quantum number

is given by the sum of ±1
2 units of angular momentum associated with the two transverse

planes, a quarter of the fermions carry j0 = 1, another quarter of them carry j0 = −1 and

half of them have j0 = 0. In order to determine which fermions carry j0 = ±1 we note

that from the point of view of an asymptotic observer j0 represents momentum along S̃1,

and hence must commute with the final unbroken supersymmetry generators. Since these

generators relate the right-moving bosons with j0 = 0 to the right-moving fermions, the

right-moving fermionic excitations must have j0 = 0. Thus the left-moving fermions must

have j0 = ±1 and hence can be rotated to each other by an appropriate element of the

tangent space SO(4)⊥ group transverse to the D5-brane. Since rotation along the tangent

plane transverse to the D5-brane commutes with g̃, the two left-moving fermions carrying

g̃ quantum number e2πi/N must have j0 = ±1 and the two left-moving fermions carrying g̃

quantum number e−2πi/N must have j0 = ±1.

To summarize, the left-moving excitations on the D5-brane world-volume, related by

supersymmetry transformation to the Wilson lines along T 4, consist of four bosonic and

four fermionic modes. Two of the four bosonic modes carry momentum along S1 of the

form Nk + 1 and the other two carry momentum along S1 of the form Nk− 1, but neither

of them carry any momentum along S̃1. On the other hand two of the fermionic modes

carry momentum along S1 of the form Nk + 1 and ±1 unit of momentum along S̃1, and

the other two fermionic modes carry momentum along S1 of the form Nk− 1 and ±1 unit

of momentum along S̃1. If dwilson(l0, j0) denotes the number of states associated with these

modes carrying total momentum −l0 along S1 and total momentum j0 along S̃1, then
∑

l0,j0

dwilson(l0, j0)e
2πil0 eρ+2πij0ev =

∏

l∈NZ+1
l>0

(1−e2πileρ)−2
∏

l∈NZ−1
l>0

(1−e2πileρ)−2
∏

l∈NZ+1
l>0

(1−e2πileρ+2πiev)

∏

l∈NZ+1
l>0

(1 − e2πileρ−2πiev)
∏

l∈NZ−1
l>0

(1 − e2πileρ+2πiev)
∏

l∈NZ−1
l>0

(1 − e2πileρ−2πiev) (4.19)

Using (2.9), (2.14) one can show that the partition function associated with the overall

dynamics of the D1-D5 system, given by the product of the contribution (4.18) from the

dynamics of the transverse modes and (in case M = T 4) the contribution (4.19) from the

dynamics of the Wilson lines along T 4, can be written as

∑

l0,j0

dCM(l0, j0)e
2πil0 eρ+2πij0ev = 4 e−2πiev

∞∏

l=1

(1 − e2πileρ)2
PN−1

s=0 e−2πils/N c
(0,s)
1 (−1)

∞∏

l=1

(1 − e2πileρ+2πiev)−
PN−1

s=0 e−2πils/N c
(0,s)
1 (−1)

∞∏

l=0

(1 − e2πileρ−2πiev)−
PN−1

s=0 e−2πils/N c
(0,s)
1 (−1)

(4.20)

both for M = K3 and M = T 4.
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4.3 Counting states associated with the relative motion of the D1-D5 system

Finally we turn to the problem of counting states associated with the motion of the D1-

brane in the plane of the D5-brane. This can be done by following a procedure identical

to the one described in [9] (which in turn is a generalization of the analysis of [36]) and

yields the answer:

∑

Q1,L,J ′

dD1(Q1, L, J ′)e2πi(eσQ1/N+eρL+evJ ′) =
∏

w,l,j∈Z

w>0,l≥0

(
1 − e2πi(eσw/N+eρl+evj)

)−n(w,l,j)
, (4.21)

where

n(w, l, j) =

N−1∑

s=0

e−2πisl/N c
(r,s)
b (4lw/N − j2) , r = w mod N , b = j mod 2 . (4.22)

4.4 The full partition function

Using (4.8), (4.17), (4.20) and (4.21) we now get

f(ρ̃, σ̃, ṽ)=e−2πi(eαeρ+ev)
1∏

b=0

N−1∏

r=0

∏

k′∈Z+ r
N

,l∈Z,j∈2Z+b

k′,l≥0,j<0 for k′=l=0

(1 − e2πi(eσk′+eρl+evj))−
PN−1

s=0 e−2πisl/N c
(r,s)
b (4lk′−j2) .

(4.23)

The k′ = 0 term in the last expression comes from the terms involving dCM(l0, j0) and

dKK(l′0). Comparing the right hand side of this equation with the expression for Φ̃ given

in (3.16) we can rewrite (4.8) as

f(ρ̃, σ̃, ṽ) =
e2πieγeσ

Φ̃(ρ̃, σ̃, ṽ)
, (4.24)

where, from (3.18),

γ̃ N =
1

24
Q0,0 =

1

24
χ(M) . (4.25)

Eq. (4.7) now gives

h(Q1, n, J) =
1

N

∫

C
dρ̃ dσ̃ dṽ e−2πi(eρn+eσ(Q1−eγ N)/N+evJ) 1

Φ̃(ρ̃, σ̃, ṽ)
, (4.26)

where C is a three real dimensional subspace of the three complex dimensional space labelled

by (ρ̃, σ̃, ṽ), given by

Im ρ̃ = M1, Im σ̃ = M2, Im ṽ = M3,

0 ≤ Re ρ̃ ≤ 1, 0 ≤ Re σ̃ ≤ N, 0 ≤ Re ṽ ≤ 1 . (4.27)

M1, M2 and M3 are large but fixed positive numbers. Identifying h(Q1, n, J) with the

degeneracy d(Qe, Qm), using (4.2), and noting that β defined in (4.1) is equal to γ̃N given

in (4.25), we can rewrite (4.26) as

d(Qe, Qm) =
1

N

∫

C
dρ̃ dσ̃ dṽ e−πi(N eρQ2

e+eσQ2
m/N+2evQe·Qm) 1

Φ̃(ρ̃, σ̃, ṽ)
. (4.28)

– 22 –



J
H
E
P
0
1
(
2
0
0
7
)
0
1
6

5. S-duality invariance of d(Qe, Qm)

The proof of S-duality invariance of d(Qe, Qm) proceeds as in [6, 10]. As described in (4.4),

under the action of S-duality the electric and magnetic charges transform to

Qe → Q′
e = aQe + bQm,

Qm → Q′
m = cQe + dQm ,

ad − bc = 1, a, d ∈ NZ + 1, b ∈ Z, c ∈ NZ . (5.1)

Let us define

Ω̃ ≡

(
ρ̃ ṽ

ṽ σ̃

)
,

Ω̃′ ≡

(
ρ̃′ ṽ′

ṽ′ σ̃′

)

= (ÃΩ̃ + B̃)(C̃Ω̃ + D̃)−1,

(
Ã B̃

C̃ D̃

)
=




ã −b̃ 0 0

−c̃ d̃ 0 0

0 0 d̃ c̃

0 0 b̃ ã


 (5.2)

where (
ã b̃

c̃ d̃

)
=

(
d c/N

bN a

)
. (5.3)

This gives

ρ̃′ = ã2ρ̃ + b̃2σ̃ − 2ãb̃ṽ ,

σ̃′ = c̃2ρ̃ + d̃2σ̃ − 2c̃d̃ṽ ,

ṽ′ = −ãc̃ρ̃ − b̃d̃σ̃ + (ãd̃ + b̃c̃)ṽ . (5.4)

Using (5.1), (5.3), (5.4) and the quantization laws of Q2
e, Q2

m and Qe · Qm one can easily

verify that

e−πi(N eρQ2
e+eσQ2

m/N+2evQe·Qm) = e−πi(N eρ′Q′2
e +eσ′Q′2

m/N+2ev′Q′
e·Q

′
m) , (5.5)

and

dρ̃ dσ̃ dṽ = dρ̃′ dσ̃′ dṽ′ . (5.6)

One can also verify that the transformation described in (5.2) is an element of the group

G̃ under which Φ̃ transforms as a modular form of weight k.8 Since for the transforma-

tion (5.2), det(C̃Ω̃ + D̃) = 1, we have

Φ̃(ρ̃′, σ̃′, ṽ′) = Φ̃(ρ̃, σ̃, ṽ) . (5.7)

8This can be seen directly from the fact that under the transformation (5.2) the integral eIr,s,b given

in (3.4) remains unchanged after a suitable relabelling of the indices m1, n1, m2, n2. Eq. (3.13) then tells

us that eΦ(eρ, eσ, ev) transforms as a modular form of weight k under this transformation.
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Finally we note that under the map (5.4) the three cycle C gets mapped to itself up to a

shift that can be removed with the help of the shift symmetries

Φ̃(ρ̃, σ̃, ṽ) = Φ̃(ρ̃ + 1, σ̃, ṽ) = Φ̃(ρ̃, σ̃ + N, ṽ) = Φ̃(ρ̃, σ̃, ṽ + 1) , (5.8)

which are manifest from (3.16). Thus eqs. (5.5)- (5.7) allow us to express (4.28) as

d(Qe, Qm) =
1

N

∫

C
dρ̃′ dσ̃′ dṽ′ e−πi(N eρ′Q′2

e +eσ′Q′2
m/N+2evQ′

e·Q
′
m) 1

Φ̃(ρ̃′, σ̃′, ṽ′)
= d(Q′

e, Q
′
m) .

(5.9)

This proves invariance of d(Qe, Qm) under the S-duality group Γ1(N).

6. Statistical entropy function

In this section we shall describe the behaviour of d(Qe, Qm) for large charges, and also

compute the first order corrections to the leading asymptotic formula. Our starting point

is the expression (4.28) for d(Qe, Qm):

d(Qe, Qm) =
1

N

∫

C
dρ̃dσ̃dṽ

1

Φ̃(ρ̃, σ̃, ṽ)
exp

[
−iπ(Nρ̃Q2

e + σ̃Q2
m/N + 2ṽQe · Qm)

]
. (6.1)

Using eqs. (3.7), (3.19) and the result

dρ̃dσ̃dṽ = (2v − ρ − σ)−3dρdσdv , (6.2)

we can rewrite (6.1) as

d(Qe, Qm) =
1

N C1

∫

C′

dρdσdv (2v − ρ − σ)−k−3 1

Φ̂(ρ, σ, v)

exp

[
−iπ

{
v2 − ρσ

2v − ρ − σ
Q2

m +
1

2v − ρ − σ
Q2

e +
2(v − ρ)

2v − ρ − σ
Qe · Qm

}]

(6.3)

where C′ is the image of C under the map (3.8). We can evaluate this integral by first

performing the v integral using Cauchy’s formula and then carrying out the ρ and σ inte-

grals by saddle point approximation. Following the analysis of [1, 9] we can show that the

dominant contribution comes from the pole at

ρ̃σ̃ − ṽ2 + ṽ = 0 i.e. v = 0 . (6.4)

From (3.20) we see that contribution from this pole is given by

d(Qe, Qm) ' C0

∫

C′′

dρdσdv v−2 (2v − ρ − σ)−k−3 (g(ρ)g(σ))−1

exp

[
−iπ

{
v2 − ρσ

2v − ρ − σ
Q2

m +
1

2v − ρ − σ
Q2

e +
2(v − ρ)

2v − ρ − σ
Qe · Qm

}]
,

(6.5)
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where C′′ is a contour around v = 0, C0 is a constant and g(ρ) has been defined in (3.21).

This integral is exactly of the form given in eq. (4.19) of [9]. Thus subsequent analysis of

this integral can be done following the procedure of [9], and we arrive at the result that

the statistical entropy

Sstat(Qe, Qm) ≡ ln d(Qe, Qm) (6.6)

is obtained by extremizing the statistical entropy function

−Γ̃B(~τ) =
π

2τ2
|Qe+τQm|2− ln g(τ)− ln g(−τ̄ )−(k+2) ln(2τ2)+constant+O(Q−2) (6.7)

with respect to the real and imaginary parts of τ .

7. Black hole entropy function

We now turn to the computation of the entropy of a black hole carrying charge quantum

numbers (Qe, Qm) and compare it with the statistical entropy computed in section 6.

For this we first need to determine the effective action governing the dynamics of the

theory. The leading order entropy is determined by the low energy effective action with two

derivative terms. This is the standard action of N = 4 supergravity theories. An important

class of four derivative corrections to the action is the Gauss-Bonnet term. We shall now

turn to the computation of this term. The calculation is best carried out in the original

description of the theory as type IIB string theory compactified on (M × S1 × S̃1)/ZN .

We shall denote by t = t1 + it2 and u = u1 + iu2 the Kahler and complex structure moduli

of the torus S1 × S̃1 with the normalization convention that is appropriate for the orbifold

theory. Thus for example if R1 and R2 denote the radii of S̃1 and S1 measured in the string

metric, and if the off-diagonal components of the metric and the anti-symmetric tensor field

are zero, then we shall take t2 = R1R2/N and u2 = R2/(R1N), taking into account the

fact that in the orbifold theory the various fields have g̃-twisted boundary condition under

a 2πR2/N translation along S1 and 2πR1 translation along S̃1. In the same spirit we shall

choose the units of momentum along S1 and S̃1 to be N/R2 and 1/R1 respectively, and

unit of winding charge along S1 and S̃1 to be 2πR2/N and 2πR1 respectively. Thus for

example a one unit of winding charge along S1 actually represents a twisted sector state,

with twist g. It is known that one loop quantum corrections in this theory give rise to a

Gauss-Bonnet contribution to the effective Lagrangian density of the form [23]:

∆L = φ(u, ū)
{
RGµνρσRµνρσ

G − 4RGµνRµν
G + R2

G

}
, (7.1)

where φ(u, ū) is a function to be determined. Note in particular that φ is independent of

the Kahler modulus t of S1 × S̃1. The analysis of [23] shows that φ(u, ū) is given by the

relation:

∂uφ(u, ū) =

∫

F

d2τ

τ2
∂uB4 , (7.2)

where B4 is defined as follows. Let us consider type IIB string theory compactified on

(M×S1 × S̃1)/ZN in the light-cone gauge Green-Schwarz formulation, denote by Trf the

trace over all states in this theory excluding the momentum modes associated with the
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non-compact directions (since their effect has been already included in arriving at the τ2

factor in (7.2)) and denote by Lf
0 , L̄f

0 the Virasoro generators associated with the left and

the right-moving modes, excluding the contribution from the momentum modes associated

with the non-compact directions. We also define F f
L , F f

R to be the contribution to the

space-time fermion numbers from the left and the right-moving modes on the world-sheet.

In this case

B4 = K Trf
(
qLf

0 q̄L̄f
0 (−1)F

f
L+F f

Rh4
)

, (7.3)

q ≡ e2πiτ

where K is a constant to be determined later and h denotes the total helicity of the

state. The evaluation of the right hand side of (7.3) proceeds as follows. We first note that

without the h4 term the answer will vanish due to the fermion zero mode contribution to

the trace since quantization of a conjugate pair of fermion zero modes (ψ0, ψ
†
0) gives rise

to a pair of states with opposite (−1)F
f
L+F f

R . This can be avoided if we insert a factor of h

in the trace and pick the contribution to h from this particular conjugate pair of fermions

since the two states have the same (−1)F
f
L+F f

R h quantum numbers. This can be repeated

for every pair of conjugate fermions. In the present example we have altogether 8 fermion

zero modes which are neutral under the orbifold group ZN , – 4 from the left-moving sector

and 4 from the right-moving sector. As a result we need four factors of h to soak up all

the fermion zero modes. Thus in effect we can simplify (7.3) by expressing it as

B4 = K ′Trf ′
(
qLf

0 q̄L̄f
0 (−1)F

f
L+F f

R

)
(7.4)

where K ′ is a different normalization constant and the prime in the trace denotes that we

should ignore the effect of fermion zero modes in evaluating the trace. Since we are using

the Green-Schwarz formulation, the 4 left-moving and 4 right-moving fermions which are

neutral under the orbifold group ZN satisfy periodic boundary condition. Thus the effect of

the non-zero mode oscillators associated with these fermions cancel against the contribution

from the non-zero mode bosonic oscillators associated with the circles S1 and S̃1 and the

two non-compact directions. This leads to a further simplification in which the trace can

be taken over only the degrees of freedom associated with the compact space M and the

bosonic zero modes associated with the circles S1 and S̃1. The latter includes the quantum

numbers m1 and m2 denoting the number of units of momentum along S̃1 and S1, and

the quantum numbers n1 and n2 denoting the number of units of winding along S̃1 and

S1. The units of momentum and winding along the two circles are chosen according to

the convention described earlier. Thus for example m2 unit of momentum along S1 will

correspond to a physical momentum of Nm2/R2 in string units. This shows that m2 can

be fractional, being quantized in units of 1/N . On the other hand a sector with n2 unit

of winding along S1 describes a fundamental string of length 2πn2R2/N , and hence this

state belongs to a sector twisted by gn2 .9 In this convention the contributions to L̄f
0 and

9This picture can be called the view from ‘downstairs’. In contrast if we use parameters and units which

are natural for the theory before orbifolding, it corresponds to the view from ‘upstairs’.
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Lf
0 from the bosonic zero modes associated with S1 × S̃1 are given by, respectively,

1

2
k2

R =
1

4t2u2
| − m1u + m2 + n1t + n2tu|

2 ,

1

2
k2

L =
1

2
k2

R + m1n1 + m2n2 . (7.5)

Thus (7.4) may now be rewritten as

B4 =
K ′

N

N−1∑

r=0

N−1∑

s=0

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r

qk2
L/2q̄k2

R/2e2πim2sTrRR,egr

(
(−1)FL+FR g̃sqL0 q̄L̄0

)
. (7.6)

The sum over s in (7.6) arises from the insertion of the projection operator 1
N

∑N−1
s=0 gs

in the trace, while the sum over r represents the sum over various twisted sector states.

TrRR;egr denotes trace over the g̃r-twisted sector RR states of the (4,4) superconformal field

theory with target space M. As required, the quantum number n2 that determines the

part of g-twist along S1 is correlated with the integer r that determines the amount of

g-twist along M. The e2πim2s factor represents part of gs that acts as translation along S1

while the action of gs on M is represented by the operator g̃s inserted into the trace. We

now note that the trace part in (7.6) is precisely the quantity N F (r,s)(τ, z = 0) defined

in (2.2) for q = e2πiτ . Thus we can rewrite (7.6) as

B4 = K ′
N−1∑

r=0

N−1∑

s=0

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r

qk2
L/2q̄k2

R/2e2πim2sF (r,s)(τ, 0) . (7.7)

We shall now compare (7.7) with the expression for Î(ρ̃, σ̃, ṽ) given in (3.3), (3.5) at ρ̃ = u,

σ̃ = t and ṽ = 0. In this case p2
R, p2

L defined in (3.2) reduces to k2
R and k2

L+ 1
2j2 respectively,

with k2
R, k2

L given in (7.5). As a result we have

Î(u, t, 0) =

∫

F

d2τ

τ2

N−1∑

r,s=0

1∑

b=0

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r,j∈2Z+b

qk2
L/2q̄k2

R/2qj2/4e2πim2sh
(r,s)
b (τ)

=

∫

F

d2τ

τ2

N−1∑

r,s=0

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r

qk2
L/2q̄k2

R/2e2πim2s(ϑ3(2τ, 0)h0(τ) + ϑ2(2τ, 0)h1(τ))

=

∫

F

d2τ

τ2

N−1∑

r,s=0

∑

m1,n1∈Z,m2∈Z/N

n2∈NZ+r

qk2
L/2q̄k2

R/2e2πim2sF (r,s)(τ, 0) , (7.8)

where in the last step we have used eq. (2.3). Comparing (7.7) with (7.8) we see that

∫

F

d2τ

τ2
B4 = K ′ Î(u, t, 0) . (7.9)
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Using (3.14) and (3.20) we get

∫

F

d2τ

τ2
B4 = −2K ′ lim

v→0
(k ln t2 + k ln u2 + 2 ln v + 2 ln v̄ + ln g(t) + ln g(t̄)

+ ln g(u) + ln g(ū)) + constant . (7.10)

Naively the right hand side diverges in the v → 0 limit. The origin of this infinity lies in the

fact that a priori the integral Î as well as
∫

d2τB4/τ2 has divergences from integration over

the large τ2 region which needs to be removed by adding constant terms in the integrand.

The constants which need to be added to the integrand of K ′Î is different from the one

that needs to be added to B4. Once we take into account this difference the right hand side

of (7.10) should become finite. In order to achieve this we shall first regularize the right

hand side of (7.10) and then remove the divergent part by subtraction. Since the original

regularization where we add an additive constant to the integrand is duality invariant, we

must regularize the right hand side of (7.10) in a duality invariant manner. Now under

a duality transformation of the form t → (at + b)/(ct + d), v transforms to v/(ct + d).

Similarly under a duality transformation of the form u → (pu + q)/(ru + s), v transforms

to v/(ru + s). Thus the combination vv̄/(t2u2) is invariant under both types of duality

transformation. This suggests that a natural way to remove the divergence on the right

hand side of (7.10) is to replace vv̄/(t2u2) by a small constant ε and then remove the ln ε

pieces by subtraction. This gives
∫

F

d2τ

τ2
B4 = −2K ′ ((k + 2) ln t2 + (k + 2) ln u2 + ln g(t) + ln g(t̄)

+ ln g(u) + ln g(ū)) + constant . (7.11)

Comparing (7.2) with (7.11) we now get

φ(u, ū) = −2K ′ ((k + 2) ln u2 + ln g(u) + ln g(ū)) + constant . (7.12)

We now turn to the determination of K ′. This constant is universal independent of the

specific theory we are analysing. Thus we can find it by working with the type IIB string

theory compactified on K3×S1× S̃1. In this case k = 10 and g(τ) = η(τ)24. This matches

with the known answer [28, 29] for φ(u, ū) if we choose K ′ = 1/(128π2). Thus we have

φ(u, ū) = −
1

64π2
((k + 2) ln u2 + ln g(u) + ln g(ū)) + constant . (7.13)

Under the duality map that relates type IIB string theory on the ZN orbifold of M×S1×S̃1

to an asymmetric ZN orbifold of heterotic or type IIA string theory on T 6, the modulus u

of the original type IIB string theory gets related to the axion-dilaton modulus τ = a + iS

of the final asymmetric orbifold theory. Thus in this description the Gauss-Bonnet term

in the effective Lagrangian density takes the form

∆L = φ(τ, τ̄ )
{
RGµνρσRµνρσ

G − 4RGµνRµν
G + R2

G

}
, (7.14)

with

φ(τ, τ̄ ) = −
1

64π2
((k + 2) ln τ2 + ln g(τ) + ln g(τ̄ )) + constant . (7.15)
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The effect of this term on the computation of the black hole entropy was analyzed in [22].

The resulting entropy function, after elimination of all the near horizon parameters except

the axion-dilaton field τ , is

E =
π

2τ2
|Qe + τQm|2 − ln g(τ) − ln g(−τ̄) − (k + 2) ln(2τ2) + constant + O(Q−2) . (7.16)

The black hole entropy is obtained by extremizing this function with respect to the real and

imaginary parts of τ . Since the black hole entropy function coincides with the statistical

entropy function given in (6.7), we see that the black hole entropy agrees with the statistical

entropy to this order.
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